Prints objects.

# S3 method for AttributeSpace
print(x, ..., header = TRUE)

# S3 method for AttributeSpaces
print(x, ..., header = TRUE)

# S3 method for GurobiOpts
print(x, ..., header = TRUE)

# S3 method for ManualOpts
print(x, ..., header = TRUE)

# S3 method for RapData
print(x, ..., header = TRUE)

# S3 method for RapReliableOpts
print(x, ..., header = TRUE)

# S3 method for RapResults
print(x, ..., header = TRUE)

# S3 method for RapUnreliableOpts
print(x, ..., header = TRUE)

# S3 method for RapUnsolved
print(x, ...)

# S3 method for RapSolved
print(x, ...)

Arguments

x

GurobiOpts(), RapUnreliableOpts(), RapReliableOpts(), RapData(), RapUnsolved(), RapResults(), or RapSolved() object.

...

not used.

header

logical should object header be included?

Examples

# \dontrun{
# load data
data(sim_ru, sim_rs)

# print GurobiOpts object
print(GurobiOpts())
#> GurobiOpts object.
#>   Threads: 1
#>   MIPGap: 0.1
#>   Method: 0
#>   Presolve: 2
#>   TimeLimit: NA
#>   NumberSolutions: 1
#>   MultipleSolutionsMethod: benders.cuts
#>   NumericFocus: 0

# print RapReliableOpts object
print(RapReliableOpts())
#> RapReliableOpts object.
#>   BLM: 0
#>   failure.multiplier: 1.1
#>   max.r.level: 5

# print RapUnreliableOpts object
print(RapUnreliableOpts())
#> RapUnreliableOpts object.
#>   BLM: 0

# print RapData object
print(sim_ru@data)
#> RapData object.
#>   Number of planning units: 100
#>   Number of species: 3
#>   Number of attribute spaces: 1

# print RapUnsolved object
print(sim_ru)
#> RapUnsolved object
#> Parameters
#>   BLM: 0
#> Data
#>   Number of planning units: 100
#>   Number of species: 3
#>   Number of attribute spaces: 1

# print RapResults object
print(sim_rs@results)
#> RapResults object.
#>   Number of solutions: 3
#>   Best solution score: 20 (20 planning units)

# print RapSolved object
print(sim_rs)
#> RapSolved object
#> Parameters
#>   BLM: 0
#> Solver settings
#>   Method: Gurobi
#>   Threads: 1
#>   MIPGap: 0.1
#>   Method: 0
#>   Presolve: 2
#>   TimeLimit: NA
#>   NumberSolutions: 3
#>   MultipleSolutionsMethod: benders.cuts
#>   NumericFocus: 0
#> Data
#>   Number of planning units: 100
#>   Number of species: 3
#>   Number of attribute spaces: 1
#> Results
#>   Number of solutions: 3
#>   Best solution score: 20 (20 planning units)
# }